OPPOSITE‐SIGN KLOOSTERMAN SUM ZETA FUNCTION

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum Formula for Kloosterman Sums and Fourth Moment of the Dedekind Zeta-function over the Gaussian Number Field

We prove the Kloosterman–Spectral sum formula for PSL2(Z[i])\PSL2(C), and apply it to derive an explicit spectral expansion for the fourth power moment of the Dedekind zeta function of the Gaussian number field. Our sum formula, Theorem 13.1, allows the extension of the spectral theory of Kloosterman sums to all algebraic number fields.

متن کامل

Kloosterman Sum Identities over F 2 m Henk

We introduce Kloosterman polynomials over F2m , and use these polynomials to prove three identities involving Kloosterman sums over F2m .

متن کامل

A new Kloosterman sum identity over F2m for odd m

A new Kloosterman sum identity over F2m is derived and a class of rational function pairs that satisfy the identity is presented. It is also shown that the Kloosterman sum identity used in the derivation of 3-designs from the Goethals codes over Z4 is a special case of the presented result. c © 2003 Elsevier Science B.V. All rights reserved.

متن کامل

An efficient deterministic test for Kloosterman sum zeros

We propose a simple deterministic test for deciding whether or not a nonzero element a ∈ IF2n or IF3n is a zero of the corresponding Kloosterman sum over these fields, and analyse its complexity. The test seems to have been overlooked in the literature. For binary fields, the test has an expected operation count dominated by just two IF2n -multiplications when n is odd (with a slightly higher c...

متن کامل

New Kloosterman sum identities and equalities over finite fields

We present some general equalities between Kloosterman sums over finite fields of arbitrary characteristics. In particular, we obtain an explicit Kloosterman sum identity over finite fields of characteristic 3. © 2008 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2016

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579315000273